

Sixth Semester B.E. Degree Examination, June/July 2016

Aerodynamics - II

Time: 3 hrs.

Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- Explain source panel methods for non-lifting flows over a arbitrary bodies to find the pressure coefficient at ith control point. Also find normal and tangential velocity. (10 Marks)
 - b. Explain vortex panel method for lifting flow over arbitrary bodies to find lift per unit span at jth control point. (10 Marks)
- The circulation distribution over a finite wing is of elliptic form $\Gamma_0 = \Gamma_0 \sqrt{1 \left(\frac{2y}{h}\right)^2}$, where 2
 - is the semi span of wing. Obtain from the closed form of expression, the induced angle of attack and induced drag coefficient. (10 Marks)
 - b. Discuss the effects of induced drag on downwash using finite wing theory horse shoe vortex system.
- Explain the assumption of linearized velocity potential equation and derive an expression for pressure coefficient using linearized velocity potential equation for an invisid, compressible, irrotational flow. (10 Marks)
 - b. Explain the characteristics of transonic airfoils.

(05 Marks)

c. If critical Mach number of an airfoil is 0.8. Calculate the value of $\frac{p}{p}$ at the minimum pressure point when $M_{\infty} = 0.8$.

(05 Marks)

- Explain a NACA0012 airfoil at zero angle of attack $C_{po} = -0.43$. Estimate the critical mach number by graphical method. (10 Marks)
 - b. Explain the following with neat sketches:
 - i) Drag-divergence Mach number and sound barrier.
 - ii) Area rule.

(10 Marks)

- 5 Briefly explain the effects of downwash on:
 - i) Formation of flying
 - ii) Ground effects on aircraft

(10 Marks)

b. A twin jet execution transport aircraft with zero angle of attack $\alpha_{L=0} = -2^{\circ}$, lift slope of airfoil section is 0.1/deg. The lift efficiency factor is 0.004 and wing AR = 7.96. At cruising condition, calculate the angle of attack of the airplane. (At cruise $C_L = 0.21$).

- 6 a. Enlist the different types of small perturbation flows and briefly explain each with a neat sketch. (10 Marks)
 - b. Describe the subsonic flows past an axially symmetric body of revolution with relevant sketches.

 (10 Marks)
- 7 a. Explain the advantages of swept sock wings in military airplanes with neat sketches.

(10 Marks)

- b. Explain with a neat sketch 4 flaps and slots, also discuss about their performance characteristics with relevant graphs. (10 Marks)
- 8 a. Define total drag and discuss the boundary layer flow transition over a flat plate and an airfoil. (10 Marks)
 - b. For velocity profile for laminar boundary layer,

$$\frac{U}{U} = 2\left(\frac{y}{\delta}\right) - \left(\frac{y}{\delta}\right)^2.$$

Determine:

- i) Displacement thickness
- ii) Energy thickness
- iii) Momentum thickness

(10 Marks)

2 of 2